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Frequency response of an electrochemical probe to the wall shear
stress fluctuations of a turbulent channel flow
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Abstract

We analyzed numerically the frequency response of the mass transfer rates produced at the surface of an electrochemical probe to the
fluctuations of the wall shear stress obtained from a direct numerical simulation of a turbulent plane channel flow at Res = 150. At low
and high frequencies the response to the turbulent wall shear stress is in accordance with the existing relations between the amplitudes of
the wall shear stress and the mass transfer rates obtained for harmonic perturbations. At intermediate frequencies the turbulent wall
shear stress fluctuations produce a larger damping in comparison with the harmonic perturbations. The phase angle of the response
of mass transfer rates with respect to the wall shear stress shows important deviations in comparison with the phase angle obtained with
harmonic perturbations, specially at high frequencies.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Mass transfer probes are used to measure wall shear
stresses in liquid flows. The probe usually consists in a
small electrode mounted flush on a wall. On the surface
of the electrode an electrochemical reaction occurs and
the measured current can be related to the mass transfer
rate by using Faraday’s law. From this quantity the veloc-
ity gradient, S, at the surface of the probe and, thus, the
wall shear stress, sw = lS can be obtained with the conven-
tional design relation for mass-transfer wall gauges. The
description of the theory and the experimental require-
ments of this measurement technique can be found in [1,2].

The use of electrochemical probes to measure the instan-
taneous wall shear stress in turbulent flows is conditioned
by two requirements. First, the measurement of the current
obtained is related to the spatially averaged mass transfer
rates on the surface of the probe and consequently the
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dimension of the probe has to be small enough to capture
the local wall shear stress fluctuations produced by the near
wall flow structures. On the other hand, the time response
of the mass transfer rates to a fluctuating flow field is asso-
ciated with the capacitance effect of the concentration
boundary layer, especially to the high frequency fluctua-
tions. The time response of electrochemical probes has
been determined experimentally in fully developed laminar
pipe flows with a time-varying sinusoidal pressure gradient
[3] and in rotating disk flow with a time-varying sinusoidal
rotation rate [4]. These harmonic perturbations generate
time evolutions of the wall shear stress with a controlled
frequency and the measurement of the time response of
the mass transfer rates allows the determination of the fre-
quency response of the probe.

It is known that for low-frequency flow perturbations
the analytical quasi-steady-state solution of the mass
boundary layer equation, correctly describes the time
response of the mass transfer rates, because the instanta-
neous mass transfer rate can be related to the instantaneous
wall shear stress by the same equation as for steady flow.
For high frequency fluctuations of the wall shear stress
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Fig. 1. Physical model.

Nomenclature

A amplitude
C concentration (mol m�3)
D mass diffusion coefficient (m s�2)
f frequency (s�1)
k convective mass transfer coefficient (m s�1)
L length (m)
R autocorrelation
Res Reynolds number (Res = usd/m)
S velocity gradient (s�1)
Sc Schmidt number (Sc = m/D)
Sh Sherwood number (Sh = k Lp/D)
t time (s)
u, v, w Cartesian velocity components (m s�1)
us friction velocity, us = (sw/q)1/2, (m s�1)
W spectral density function
x, y, z Cartesian coordinates (m)

Greek symbols
D increment
C Gamma function

d channel half width (m)
l dynamic viscosity (kg m�1 s�1)
m kinematic viscosity (m s�2)
h phase angle
q density (kg m�3)
sw wall shear stress (N m�2)

Superscripts and subscripts

b bulk
p probe
rms root-mean-square
w wall
+ wall scaling
* non-dimensional quantity
‘ fluctuation
h i, � time-averaged quantity
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the capacitance effect of the mass transfer boundary layer
produces damped fluctuations of the mass transfer rates.
Since the frequency cutoff for which the quasi-steady-state
can be considered to be valid is rather low owing to the
large value of the Schmidt number in liquids, the determi-
nation of the transfer function has been the objective of
several studies. The transfer function that relates the power
spectral density of the fluctuations of the averaged mass
transfer rate over the probe surface and that of the fluctu-
ations of the velocity gradient at the wall has been reported
by Desloius et al. [4], Py [5] and Mitchell and Hanratty [6]
and Fortuna and Hanratty [7]. The expressions of the
transfer function were obtained considering that the fluctu-
ating velocity gradient is given as a harmonic function and
by solving a linearized version of the unsteady part of the
mass transfer balance. Mao and Hanratty [8–10] used an
inverse method to take into account the non-linearity.
These authors measured the time evolution of the mass
transfer rates generated on small probes in turbulent pipe
flows. The velocity gradient at the wall obtained with the
quasi-steady-state solution of the mass boundary layer
equation was corrected by solving iteratively the mass
transport equation until the mass transfer rates obtained
numerically were coincident with those measured.

In this study the frequency response of a mass transfer
probe to a fluctuating wall shear stress transfer of a turbu-
lent plane channel flow has been determined by solving
numerically the complete differential unsteady mass trans-
fer balance using the time evolution of the wall velocity
gradient extracted from a direct numerical simulation
(DNS) of a turbulent channel flow. To the authors’ knowl-
edge, there is no previous study that examines numerically
the frequency response of mass transfer probes by using a
signal of the wall shear stress that contains the intrinsic
properties of the real turbulent wall shear stress, as for
example its characteristic power spectra and probability
density function. The information extracted from this anal-
ysis can be useful to improve the measurement of the
instantaneous wall shear stress using the electrochemical
technique.
2. Physical model

The physical model and the coordinate system are
shown in Fig. 1. It is assumed that the mass transfer probe
is flush mounted on a wall of a plane channel. The two
walls of the channel are separated a distance 2d. The fully
developed flow in the channel is driven by a constant pres-
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sure gradient along the streamwise direction. The Reynolds
number based on the bulk velocity and the distance
between the walls is Re = 4570 and that based on the fric-
tion velocity and the channel half width is Res = 150. The
concentration of the reacting electrolyte is constant outside
the mass transfer boundary layer and the Schmidt number
is set to 1000, typical in liquids. The physical properties of
the fluid are considered constant. The electrochemical reac-
tion occurring on the probe is assumed to be fast enough to
consider the concentration of the reacting electrolyte to be
zero on the probe.

The streamwise dimension of the probe is Lp = 0.01d,
Lþp ¼ 1:5 in wall units. Fig. 2 shows the streamwise
(Fig. 2a) and spanwise (Fig. 2b) autocorrelations of the
fluctuations of the streamwise component of wall shear
stress computed from the DNS database. It can be seen
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Fig. 2. Streamwise (a) and spanwise (b) autocorrelations of the wall shear
stress.
that the autocorrelations agree with those predicted by
the DNS of Jeon et al. [11] plotted in Fig. 2 with symbols.
Fig. 2a indicates that the correlation of the fluctuations of
the wall shear stress on the leading and the trailing edges of
the probe considered is very close to 1. Consequently, the
length of the probe is small enough to reasonably assume
that the wall shear stress is constant over the streamwise
extension of the computational domain of dimension
Lx = 0.02d (i.e. sw does not depend on x). On the other
hand, the vertical dimension of the computational domain,
Ly = 0.004d (Lþy ¼ 0:6) can be considered small enough to
assume a linear variation of the instantaneous streamwise
velocity component along the vertical direction (i.e.
u = Sy). These two assumptions allow for the vertical
velocity component to be neglected (i.e. v = 0).

The spanwise autocorrelation of the fluctuations of the
wall shear stress shows that the two-dimensional approach
(i.e. sw does not depend on z) can be considered represen-
tative for a rectangular probe with aspect ratio Lz/Lp of
about three. As shown in Fig. 2b, for a probe with this
aspect ratio the correlation between the fluctuations of
the wall shear stress at the two edges of the probe separated
a distance 3Lp is 0.96. It should be noted that the two-
dimensional approach is also based on the assumption that
the thickness of the concentration boundary layer is small
enough compared to the width Lz of the electrode so that
mass diffusion in the spanwise direction can be neglected.
The results presented in the next sections show that the
thickness of the concentration boundary layer is about
0.06 the width of a rectangular probe of aspect ratio Lz/
Lp = 3.

Note also that the size of the computational domain
Lþx ¼ 1:5 Lþy ¼ 0:6 is comparable to the usual grid size near
the wall used in DNS of turbulent channel flows. The typ-
ical grid sizes near the wall of DNSs are about Dx+ � 10–
15, Dy+ � 0.05–0.5 and Dz+� = 4–7. This indicates that
the two-dimensional hypothesis and the consideration of
a uniform wall shear stress on the probe are reasonable,
for the flow conditions of the simulation.
3. Mathematical model

The above hypotheses allow writing the two-dimen-
sional mass transfer equation (Eq. (1)) to model the rela-
tion between the wall shear stress and the mass transfer
rates on an electrochemical probe mounted on a wall of
the channel. In fact, Eq. (1) is the conventional approach
used by previous authors [4–7] to obtain analytically the
relation between the wall shear stress and the mass transfer
rates.

oC�

ot�
þ S�y�

oC�

ox�
¼ 1

ResSc
o2C�

ox�2
þ o2C�

oy�2

� �
ð1Þ

In Eq. (1), (S*y*) is the streamwise velocity component
(u*), which is assumed to vary linearly with the vertical
coordinate. Eq. (1) has been non-dimensionalized with
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Fig. 3. Spatial distributions of the time-averaged concentration and
fluctuation intensities.
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the channel half width (d) and the averaged friction velocity
(us = (sw/q)1/2) as the length and velocity scales. The result-
ing non-dimensional parameters are the Reynolds and the
Schmidt numbers defined as, Res = usd/m and Sc = m/D,
respectively. The non-dimensional concentration is defined
as C* = C/Cb. It should be noted that the existing theoret-
ical and numerical studies usually neglect the streamwise
diffusion term according to the conventional boundary
layer hypothesis. The consideration of this term in Eq.
(1) modifies the concentration distribution predicted by
the Leveque solution (see for example Deslouis et al. [4])
near the leading and trailing edges of the probe.

Eq. (1) has been solved numerically with a second order
accuracy finite volume code, in the 2D computational
domain sketched in Fig. 1 using the time evolution of S

extracted from a DNS of a fully developed plane channel
flow. The database of the wall shear stress contains the
time evolution during 25 large-eddy turn over times
(t = 25 d/us) of the three components of the velocity vector
and the pressure in 121 � 121 grid nodes located at
y+ = 0.5. The instantaneous wall shear stresses were com-
puted assuming a linear variation of the instantaneous
streamwise velocity component within the distance between
the first near-wall grid node and the wall. The period of
non-dimensional time recorded is about 50 times the inte-
gral time scale of the wall shear stress evolution. The details
of the numerical techniques used for the DNS of the plane
channel flow, as well as a detailed comparison of this sim-
ulation with those available in the literature can be found
in Fabregat [12]. Recently, this database has been used to
educe near-wall flow structures responsible for large fluctu-
ations of wall shear stress [13].

The diffusion and the advection terms in Eq. (1) have
been discretized in a non-uniform finite volume grid with
the centered scheme and the time integration was per-
formed with the Crank-Nicolson scheme.

The dimensions of the computational domain indicated
in Fig. 1, are Ly = 0.004d, Lp = 0.01d, Ld = 0.005d,
Lx = 0.02d. The boundary conditions for C* are, C* = 0
at the probe surface (i.e. at 0 < x* < 0.01), according to
the hypothesis of a fast electrochemical reaction at the
probe, and oC*/oy* = 0 at the impermeable wall of the
channel (i.e. at �0.005 < x* < 0 and at 0.01 < x* < 0.015).
The concentration is assumed to be constant (C* = 1) at
the inlet (x* = �0.005) and at the top boundary of the com-
putational domain (y* = 0.005), which for the flow condi-
tions considered, are far enough from the probe, as it will
be shown in next section. At x* = 0.015 the conventional
non-reflecting outflow boundary conditions for C*, based
on a discretized version of Eq. (2), were imposed.

S�y�
oC�

ox�
¼ 1

ResSc
o

2C�

oy�2

� �
ð2Þ

The computational domain sketched in Fig. 1 has been
discretized with a non-uniform grid distribution. The grid
nodes have been stretched towards the wall and towards
the leading and trailing edges of the probe. Simulations
of the time evolution of the averaged mass transfer rates
over the probe using grids of 117 � 61 and 229 � 121 give
the same frequency response to a sinusoidal modulated
non-dimensional wall velocity gradient of the form

S� ¼ S� þ A�S sinð2pf �Þ ð3Þ
with S� ¼ 150 (i.e. Res = 150), A*S = 12.5 and f* = 30. The
time-averaged Sherwood numbers, spatially averaged over
the probe surface are 10.74 and 10.73 for the two grids.
Consequently, the simulations have been carried out with
the grid of 117 � 61 nodes.

4. Results and discussion

Fig. 3 shows the contours of the time-averaged concen-
tration distribution and those of the fluctuations intensities
of the concentration. The Leveque solution to the pseudo-
steady-state equation (Eq. (4)), expressed in Eq. (5) is also
shown for comparison.

S�y�
oC�
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¼ 1

ResSc
o2C�
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� �
ð4Þ

C� ¼ 1

Cð4=3Þ

Z g

0

expð�q3Þdq ð5Þ

where g ¼ y�ðS�ResSc=9x�Þ1=3 and C is the Gamma function
Eq. (4) can be obtained from the time-averaged version

of Eq. (1) by dropping the time-averaged x-diffusion term
and the turbulent transport term (yohs0c0i/o)x). Eq. (4) is
based on the pseudo-steady-state assumption, which is
valid for slowly varying velocity fields and, according to
Hanratty and Campbell [1], it can be used to predict the
time-averaged mass boundary layer for sufficiently small
values of s0/hSi.
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It can be seen in Fig. 3, by comparing the numerical and
the analytical results, that the end effects at the leading and
trailing edge of the probe have a limited extension given the
length of the probe considered (Lþp ¼ 1:5). The numerical
prediction of the mass transfer boundary closer to the wall
(i.e. with a time-averaged concentration below 0.1) agrees
with the analytical solution because of the low values of
the fluctuation intensities of concentration. In fact, the
time-averaged Sherwood number averaged over the probe
predicted by the simulation is 10.56 and that obtained from
the analytical solution is 10.57. The rms of the velocity gra-
dient is 0.35, in agreement with the value of 0.36 reported
by Jeon et al. [11] at Res = 180. The maximum value of
the rms of the concentration is about 6 times smaller than
the rms of S, as shown in Fig. 3, indicating the overall
damping effect of the mass transfer boundary layer.

The time-averaged concentration distribution can be
used to solve a linearized version of a transport equation
for the fluctuations of concentration (Eq. (6)).
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Eq. (6) has been solved numerically by Fortuna and
Hanratty [7] using Eq. (5) to compute C and assuming that
the fluctuating velocity gradient can be written as a har-
monic function, as

s0� ¼ bS expði2pf �t�Þ ð7Þ

For f* ? 0 the pseudo-steady-state approximation is

Sh0

hShi ¼
1

3

s0

hSi ð8Þ

The fluctuating velocity gradient and the fluctuating
Sherwood number can be represented in terms of their
spectral density functions (s.d.f.).

hSh02i ¼
Z 1

0

W Shdf � ð9Þ

hs02i ¼
Z 1

0

W Sdf � ð10Þ

Fig. 4 shows the s.d.f. of the velocity gradient and the
Sherwood number averaged over the length of the probe.
It can be seen that the s.d.f. of the velocity gradient agrees
with that reported by Jeon et al. [11] and that the damping
effect of the mass transfer boundary layer is evident for
f* > 5. The relation of the s.d.f. of the velocity gradient
and Sherwood number is shown in Fig. 5a. Note that the
vertical scaling used in this figure is based on the result
of the pseudo-steady-state approximation expressed by
Eq. (8).

We solved Eq. (1) considering harmonic perturbations
of the velocity gradient of the form indicated in Eq. (3)
using the computational conditions described before. The
amplitude of the sinusoidal perturbations is A�S ¼ 12:5,
which correspond to maximum intensities of the fluctua-
tions of S* of 8%. At this low amplitude, the response of
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the averaged mass transfer rate only depends on the fre-
quency and it is well reproduced by a sine function with
a certain phase angle. It can be seen that the frequency
response of the Sherwood number to a harmonic perturba-
tions of the velocity gradient obtained from these numeri-
cal simulations agrees with the relations reported by
Deslouis et al. [4] and plotted in Fig. 5a. As expected, at
low frequencies (f* 6 1) the ratio of the amplitudes is well
defined by the pseudo-steady-state solution (Eq. (8)). In
the range 2 6 f* 6 7 the damping of the mass transfer
boundary layer in a turbulent channel flow is underpredict-
ed by the frequency response to harmonic perturbations of
the wall shear stress as can be observed in Fig. 5a. The
agreement between the response of the mass transfer rates
to harmonic perturbations obtained with numerical simula-
tions of Eq. (1) and the response based on the solution of
the linearized equation for the fluctuations of concentra-
tion suggests that the response to turbulent fluctuations is
sensitive to the fact that the wall stress signal has a range
of frequencies instead of a single or a dominant one. The
range of frequencies in which this effect is noticeable
(2 6 f* 6 7) corresponds to the inertial subrange of the
s.d.f. of the wall shear stress (see Fig. 4).

The phase angle of the response of the mass transfer
rates to the fluctuations of the wall shear stress is plotted
in Fig. 5b. It can be seen that the solution of the linearized
transport equation of the fluctuations of concentration
(Eq. (6)) reported by Py [5] overpredicts the phase angle
with respect to the numerical solution of the complete
two-dimensional mass transfer equation (Eq. (1)) consider-
ing harmonic perturbations or turbulent fluctuations of the
wall shear stress. The phase angle obtained with the wall
shear stress of the turbulent channel flow in the range
f* > 15, in which the fluctuations have very low intensities
(see Fig. 4), is approximately constant (h � 70�).

5. Conclusions

The response of a mass transfer probe to harmonic and
turbulent fluctuations of the wall shear stress has been
numerically predicted. While the response to harmonic per-
turbations agrees with the data existing in the literature, the
response to turbulent fluctuations has a larger damping in
comparison with that produced by harmonic fluctuations
at moderate frequencies (2 6 fd/us 6 7). This indicates that
the amplitude of the response of the wall shear stress in this
range of frequencies which is within the inertial subrange of
the power spectra is affected by the fact that the signal of
the turbulent wall shear stress fluctuations has a specific
distribution of energy among this range of frequencies.
The phase angle of the response to fluctuations of the wall
shear stress in a turbulent channel flow is lower in compar-
ison with that of the harmonic fluctuations, specially at
high frequencies. The differences between the observed
response of the probe to the turbulent fluctuations and to
the low-amplitude harmonic fluctuations can be attributed
to the different amplitude and spectral characteristics of the
two types of perturbations.
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